Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
New Gener Comput ; : 1-24, 2022 Nov 20.
Article in English | MEDLINE | ID: covidwho-2294470

ABSTRACT

In the past few years, most of the work has been done around the classification of covid-19 using different images like CT-scan, X-ray, and ultrasound. But none of that is capable enough to deal with each of these image types on a single common platform and can identify the possibility that a person is suffering from COVID or not. Thus, we realized there should be a platform to identify COVID-19 in CT-scan and X-ray images on the fly. So, to fulfill this need, we proposed an AI model to identify CT-scan and X-ray images from each other and then use this inference to classify them of COVID positive or negative. The proposed model uses the inception architecture under the hood and trains on the open-source extended covid-19 dataset. The dataset consists of plenty of images for both image types and is of size 4 GB. We achieved an accuracy of 100%, average macro-Precision of 100%, average macro-Recall of 100%, average macro f1-score of 100%, and AUC score of 99.6%. Furthermore, in this work, cloud-based architecture is proposed to massively scale and load balance as the Number of user requests rises. As a result, it will deliver a service with minimal latency to all users.

2.
J Biomol Struct Dyn ; : 1-12, 2022 Feb 06.
Article in English | MEDLINE | ID: covidwho-2257687

ABSTRACT

Today, we are coping with the pandemic, and the novel virus is covertly evolving day by day. Therefore, a precautionary system to deal with the issue is required as early as possible. The last few years were very challenging for doctors, vaccine makers, hospitals, and medical authorities to deal with the massive crowd to provide results for all patients and newcomers in the past months. Thus, these issues should be handled with a robust system that can accord with many people and deliver the results in a fraction of time without visiting public places and help reduce crowd gathering. So, to deal with these issues, we developed an AI model using transfer learning that can aid doctors and other people to get to know whether they were suffering from covid or not. In this paper, we have used VGG-19 (CNN-based) model with open-sourced COVID-CT (CTSI) dataset. The dataset consists of 349 images of COVID-19 of 216 patients and 463 images of NON-COVID-19. We have achieved an accuracy of 95%, precision of 96%, recall of 94%, and F1-Score of 96% from the experiments.Communicated by Ramaswamy H. Sarma.

3.
EXCLI J ; 21: 1245-1272, 2022.
Article in English | MEDLINE | ID: covidwho-2072283

ABSTRACT

The severe acute respiratory syndrome (SARS-CoV, now SARS-CoV-1), middle east respiratory syndrome (MERS-CoV), Neo-CoV, and 2019 novel coronavirus (SARS-CoV-2/COVID-19) are the most notable coronaviruses, infecting the number of people worldwide by targeting the respiratory system. All these viruses are of zoonotic origin, predominantly from bats which are one of the natural reservoir hosts for coronaviruses. Thus, the major goal of our review article is to compare and contrast the characteristics and attributes of these coronaviruses. The SARS-CoV-1, MERS-CoV, and COVID-19 have many viral similarities due to their classification, they are not genetically related. COVID-19 shares approximately 79 % of its genome with SARS-CoV-1 and about 50 % with MERS-CoV. The shared receptor protein, ACE2 exhibit the most striking genetic similarities between SARS-CoV-1 and SARS-CoV-2. SARS-CoV primarily replicates in the epithelial cells of the respiratory system, but it may also affect macrophages, monocytes, activated T cells, and dendritic cells. MERS-CoV not only infects and replicates inside the epithelial and immune cells, but it may lyse them too, which is one of the common reasons for MERS's higher mortality rate. The details of infections caused by SARS-CoV-2 and lytic replication mechanisms in host cells are currently mysterious. In this review article, we will discuss the comparative highlights of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and Neo-CoV, concerning their structural features, morphological characteristics, sources of virus origin and their evolutionary transitions, infection mechanism, computational study approaches, pathogenesis and their severity towards several diseases, possible therapeutic approaches, and preventive measures.

4.
OpenNano ; 8:100078-100078, 2022.
Article in English | EuropePMC | ID: covidwho-2026957

ABSTRACT

The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants made emerging novel coronavirus diseases (COVID-19) pandemic/endemic/or both more severe and difficult to manage due to increased worry about the efficacy and efficiency of present preventative, therapeutic, and sensing measures. To deal with these unexpected circumstances, the development of novel nano-systems with tuneable optical, electrical, magnetic, and morphological properties can lead to novel research needed for (1) COVID-19 infection (anti-microbial systems against SARS-CoV-2), (2) early detection of mutated SARS-CoV-2, and (3) targeted delivery of therapeutics using nano-systems, i.e., nanomedicine. However, there is a knowledge gap in understanding all these nano-biotechnology potentials for managing mutated SARS-CoV-2 on a single platform. To bring up the aspects of nanotechnology to tackle SARS-CoV-2 variants related COVID-19 pandemic, this article emphasizes improvements in the high-performance of nano-systems to combat SARS-CoV-2 strains/variants with a goal of managing COVID-19 infection via trapping, eradication, detection/sensing, and treatment of virus. The potential of state-of-the-art nano-assisted approaches has been demonstrated as an efficient drug delivery systems, viral disinfectants, vaccine productive cargos, anti-viral activity, and biosensors suitable for point-of-care (POC) diagnostics. Furthermore, the process linked with the efficacy of nanosystems to neutralize and eliminate SARS-CoV-2 is extensively highligthed in this report. The challenges and opportunities associated with managing COVID-19 using nanotechnology as part of regulations are also well-covered. The outcomes of this review will help researchers to design, investigate, and develop an appropriate nano system to manage COVID-19 infection, with a focus on the detection and eradication of SARS-CoV-2 and its variants. This article is unique in that it discusses every aspect of high-performance nanotechnology for ideal COVID pandemic management. Graphical Image, graphical

5.
MedComm (2020) ; 3(1): e119, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1680505

ABSTRACT

Since early 2020, coronavirus diseases 2019 (COVID-19) infection pandemic/endemic is constantly surprising health experts because of continuous variations in the structures of severe acute respiratory coronavirus 2 (SARS-CoV-2) in the form of newly emerged variants. Such mutations have exhibited high mortality and severity due to the newly emerged more infectious sites of SARS-CoV-2, making viral infection more transmissible, infectious, and severe. Recently, SARS-CoV-2 mutated to another variant, namely, Omicron (B.1.1.529), which is many times more transmissible and infectious than existed deadly Delta variants of the virus. This severity is closely correlated to a larger number of mutations observed in the receptor-binding domain of the spike protein of the Omicron-SARS-CoV-2. Considering severity, Omicron has been declared as variant of concerns by the World Health Organization and within days from its emergence, Omicron infection has spread globally, increased hospitalization, exhibited more severity for the young generation, invaded defense mechanism of natural immunity, not responsive to the available vaccines. Such circumstances resonated with the efficiency of available strategies established to manage COVID-19 intelligently and successfully. To explore these aspects, this perspective article carefully and critically summarizes the Omicron's origin, structure, pathogenesis, impact health along with health systems, and experts' recommendations to manage it successfully.

6.
Biotechnol Rep (Amst) ; 33: e00712, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1676657

ABSTRACT

Optimized therapeutic bio-compounds supported by bio-acceptable nanosystems (i.e., precise nanomedicine) have ability to promote health via maintaining body structure, organ function, and controlling chronic and acute effects. Therefore, nano-nutraceuticals (designed to neutralize virus, inhibit virus bindings with receptors, and support immunity) utilization can manage COVID-19 pre/post-infection effects. To explore these approaches well, our mini-review explores optimized bio-active compounds, their ability to influence SARS-CoV-2 infection, improvement in performance supported by precise nanomedicine approach, and challenges along with prospects. Such optimized pharmacologically relevant therapeutic cargo not only affect SARS-CoV-2 but will support other organs which show functional alternation due to SARS-CoV-2 for example, neurological functions. Hence, coupling the nutraceuticals with the nano-pharmacology perspective of higher efficacy via targeted delivery action can pave a novel way for health experts to plan future research needed to manage post COVID-19 infection effect where a longer efficacy with no side-effects is a key requirement.

7.
Chem Biol Interact ; 332: 109298, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-893657

ABSTRACT

The on-going pandemic of COVID-19 wreaked by a viral infection of SARS-CoV-2, has generated a catastrophic plight across the globe. Interestingly, one of the hallmarks of COVID-19 is the so-called 'cytokine storm' due to attack of SARS-Cov-2 in the lungs. Considering, mesenchymal stem cells (MSCs) therapy could contribute against SARS-CoV-2 viruses attack because of their immune modulatory and anti-inflammatory ability linked to their stemness, to the arsenal of treatments for COVID-19. Another novel therapeutic strategies include the blockade of rampant generation of pro-inflammatory mediators like acute respiratory distress syndrome (ARDS), degradation of viral protein capsids by PROTACs, composed of Ubiquitin-proteasome framework, and ubiquitination-independent pathway directing the SARS-CoV-2 nucleocapsid protein (nCoV N) and proteasome activator (PA28γ), etc. This review is consequently an endeavour to highlight the several aspects of COVID-19 with incorporation of important treatment strategies discovered to date and putting the real effort on the future directions to put them into the perspective.


Subject(s)
COVID-19 Drug Treatment , Animals , COVID-19/epidemiology , COVID-19/etiology , COVID-19/therapy , Humans , Pandemics , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL